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Summary 

In this paper, we present a complete overview of possible stable geometries for multistable shells 
under the uniform curvature assumption. Based on previous work, and using some aspects of 
Catastrophe Theory we formally identify the boundaries between monostable, bistable and tristable 
regions and isolate the relevant material and geometrical parameters. The boundaries themselves 
represent regions of neutral stability, which in turn allow for an infinity of shapes, and we believe 
these exhaust the possibilities for multistable shells, putting a practical ceiling at a maximum of 
three states with absolute stability. 
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1. Introduction 

In the past few years, much interest has centered on developing multistable shells. Their uses 
range from children toys to the aeronautical industry and, in Nature, we encounter shell bistability 
in the snapping of the Venus Flytrap [1]. Recent papers have made substantial contributions 
towards understanding them and have presented bistable, tristable and neutrally stable behaviour 
using corrugated, composite and pre-stressed shells ([2],[3],[4]). 

Seffen & Guest [5] focussed on specific cases of shells using the same energy formulation 
presented here, in order to ascribe the effect of initial geometry, constitutive material behaviour and 
pre-stressing on stability. They obtained closed-form solutions of the deformed, load-free shapes of 
shell as well as their stability properties—but only for a limited number of cases; here, we aim to 
extend their results by developing a less restricting strategy to account for all possible initial 
configurations. Central to this approach is the strain energy potential, which is algebraic in nature 
owing to the widespread assumption of uniform curvatures. Accordingly, we can operate upon this 
polynomial expression by employing tools from Catastrophe Theory, to describe conclusively 
regions of stability—their extent and their boundaries—in terms of controlling parameters of initial 
shape, material properties and pre-stress. Importantly, we do not have to solve explicitly for all 
possible equilibria, rather only for them that lie at the interface between differently stable regimes. 

This paper aims to show the complete range of behaviour for free-standing multistable shells 
under the uniform curvature assumption. We also show that the controlling parameters for stability, 
can be reduced to a few geometric and material parameters. With this simplified expression for the 
shell energy, we are able to use some tools from Catastrophe Theory to conclusively describe areas 
a mono-, bi- and tri-stability, and the boundaries between them.  

In general, Catastrophe Theory allows us to examine how systems respond to small changes in 
their controlling parameters. To state this more clearly; if we consider a potential         , with   
state variables    and   control parameters    (     ,       ), the equilibria,       , can be 
found by solving:              



                                          
         

   
                                                                       (1) 

Catastrophe Theory then reveals how the equilibria, or “critical points”,        of          
perform as the control parameters,   , change [6]. Their stability is assessed using the Hessian 
matrix of   and, according to Thom’s splitting lemma, the interesting behaviour occurs when the 
Hessian becomes singular. This scenario is called a catastrophe, and original work by Thom [7] 
classifies all the possible forms for energy potentials described by less than six parameters. As the 
name implies, these events can sometimes lead to sudden failures in practice, and Catastrophe 
Theory can help us detect and prevent the generating circumstances. In many other cases, we study 
the catastrophe event, in order to understand and control a useful transition between stability 
regimes—as in the multistable shells here, and this might be realised, for example, by embedding 
actuators in the structure [8]. 

The outline of this paper is as follows. Section 2 introduces the strain energy potential for 
multistable shells, which has been developed elsewhere, which is then simplified in Section 3 
mainly by eliminating redundant parameters. Section 4 uses some tools from Catastrophe Theory to 
characterise and distinguish regions of consistent mutltistable behaviour in terms of geometric, 
material and pre-stress parameters: we also choose to study the stability of one special critical point 
of interest. In Section 5 we conclude with a summary.  

2. Strain energy expression 

Our analysis uses the governing equations of deformation for multistable orthotropic shells 
derived by Seffen [9]. These are for an unloaded, linear elastic shell of elliptical planform and 
constant thickness. They account for both bending and stretching of the shell middle surface, and 
their derivation relies upon the assumption of uniform curvatures throughout; there is no spatial 
variation, which enables the classical governing partial differential equations to be simplified 
without a loss of accuracy. Although this approach ignores the effect of a narrow and real layer of 
non-uniform bending at the edge of the shell, the middle-surface forces are exactly determined for 
this mode of deformation. The final dimensionless expression for the strain energy stored in the 
shell can be written as a fourth-order polynomial: 
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 Here   and   are the modular ratios equal to       and       with Young’s modulus,  , and 

shear modulus,  , and   and   are in-plane coordinates aligned to the major and minor axes of the 
shell. The Poisson ratio is  , and   is a geometrical and material shape factor for the shell. The   
terms are the out-of-plane curvatures of the middle surface—our state variables—and they define 
the current shape of the shell. An overbar denotes a dimensionless form and the other   terms with 
a “0” subscript describe the initial stress-free shape.  

Pre-stress effects are simply included by replacing the initial curvature with a term equal to the 
the sum of initial curvature and pre-stress curvature [10]. The latter is the curvature that would be 
adopted by the shell if it could deform without constraint, and we denote this effect with subscript 
“F”. We also substitute the shear stiffness term with a single parameter for convenience, and our 
slightly modified potential compared to Seffen & Guest [5] can be read as:  
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3. Removal of redundant parameters 

Catastrophe Theory allows us to examine the strain energy potential in view of its global stability 
characteristics. Beforehand, we simplify Eqn 3 by isolating those parameters directly responsible 
for controlling multistability: any other parameters that do not are given a nominal value, as now 
described. 

First, we transform the dimensionless curvatures by setting  ̅   ̂ √ , with similar 
transformations for the “ ” and “ ” subscripts: none is needed for the  -direction terms. For the 
terms associated with twisting, we substitute  ̅    ̂  √  

, and   can be eliminated by introducing 



new variables, namely:     √        √   ̅   √ . This shows that   is simply a scaling 
factor for the strain energy, which can be set to unity without changing the stability properties of the 
shell.  Similarly for  ̅, we apply an isotropic transformation such that  ̂   ̃ √ ̅, and we re-cast 
the strain energy by defining  ̃   ̅ ̅. As a result,  ̅ emerges as another linear scaling factor, 
which is also set equal to unity, for convenience.  

In addition, we combine the initial curvatures and pre-stress into three control parameters by 
setting     ̂    ̂  ,     ̂    ̂   and     ̂   ̂  , the initial Gaussian curvature. Control 
parameters related to twist are set equal to zero following a separate study, which has confirmed 
that their effect upon the overall stability landscape is marginal. However, the twisting curvature 
must be retained as a state variable for propriety in assessing stability. Substituting the new 
variables, we obtain the required form of strain energy potential as: 
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We now have an equivalent system whose control parameters are   ,   ,   ,   and  .   

3.1 Stability 

The stability of each state can be examined through the generalised stiffness matrix. This is 
produced from the Taylor expansion of the generalised energy expression, where a form is given by 
Guest & Pellegrino [11], and then extended by Seffen [9]. There are three state variables, and the 
complete matrix is written as:  
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 after substituting Eqn (3), and differentiating appropriately. An equilibrium solution is stable when 

  is positive definite, and a sufficient condition is that all the eigenvalues of   are positive. When 

there is a change in the stability performance, it is marked by some of the eigenvalues reducing to 

zero.  

4. Analysis of different parameter regions 

4.1 Overview of stability regions 

In order to establish the stability performance, previous studies— typically carried out by 
engineers—find the equilibrium shapes of shell explicitly and then check their stability using  . To 
extract any dependence of the stability upon the initial parameters, an exhaustive approach is 
performed involving all possible values and combinations of them, and the results are then 
presented in some suitable graphical form that reveals the transition between regimes. In 
Catastrophe Theory, these transitions are termed the “critical boundaries”, and they are obtained 
more efficiently for two reasons: by focusing on the influence of the controlling parameters, rather 
than the state variables, and by only dealing with equilibria on these boundaries. In the present case, 
these boundaries are found by formally solving the following system of four equations: 
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Eqns 6 detect equilibria as points of minimum energy with respect to the shell geometry, material 
properties and pre-stress. These can be solved in closed-form in terms of the state variables and the 
control parameters, and the resulting expressions are substituted into Eqn 7, which determines the 
critical boundaries directly. Some simplification is obtained if we express the curvatures in a new 
coordinate system (  ,   ), such that  ̃       ,  ̃       . Similarly,         , 
        . The closed form  solutions of Eqns 6 can be verified as:   
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We see from Eqn 8(c) that twisted and untwisted solutions are uncoupled. We also observe that   

does not affect the form of untwisted equilibria. It does however affect their stability. In addition, 
when we do include twisted solutions,   has an effect. For a more detailed analysis of this, see 
Fernandes et al [12]. We focus on untwisted solutions to allow us a simpler overview of overall 
behaviour. We set      , and the remaining three equations – 7, 8(a), 8(b) - contain six 
unknowns in   ,   ,   ,   ,    and  . We choose to specify  , the Poisson’s ratio term, and   , 
the initial dimensionless Gaussian curvature, because we are interested specifically in the effects of 
pre-stress: this reduces the number of unknowns to four, thereby enabling unique, parametric 
solutions for the remaining parameters. Their final expressions are obtained using the symbolic 
solver in Mathematica [13]. We give compact expressions for    and    below with    as the 
parametric variable. In total, there are four of them, depending on the choice of sign within “ ”, 
and they define the relationships between parameters on the critical boundaries:   

 

    

√  √    
               

          (√    
                  )

      
 (9a) 

  

    
  (√    

                  )

      
 (9b) 

   and   

    

√√    
               

          (√    
                  )

 √      
 (10a) 

  

   
  (√    

                  )

      
 (10b) 

    
 After substituting for   , we can plot these expressions on the         plane for specified values 

of   and   , which returns the critical boundaries as certain curves. By repeating this process for a 
range of    values, for the same value of  , successive         planes can be assembled in the 
direction of   , to render the critical boundaries as  surfaces in Cartesian space of axes           . 
One set of surfaces is given in Fig. 1 and the volumetric space between surfaces corresponds to the 
values of pre-stress and initial shape needed to yield equilibria of the same stability properties. To 
find out the degree of stability, we plot some of the original horizontal slices in Fig. 2. They clearly 
show the boundary curves and the junction, or “critical”, points at which they intersect, and how 
they evolve with   . By considering the topological features of the boundary curves in the vicinity 
of the critical points, we can pronounce directly upon the degree of stability around them using 
Thom's classification [8]. In particular, the pitchfork bifurcation, which manifests as a cusp 
catastrophe, marks the transition from monostable to bistable regions along the      and      
lines. In Fig. 2 we see, for different values of the initial Gaussian curvature, the outline of all curves 
indicating loss of equilibria or stability on the   -   plane. 



There are only four critical points that allow passage from monostable to tristable regions and 
their location is of interest. Based on previous knowledge [1] and on the symmetry in the energy 
expression above, we know that moving along       , or equivalently, by setting      and 
    , we can locate those points. We solve Eqns 6 and 7 again but including these constraints, 
and the resulting solutions for    are found to be:  
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 on the positive    axis, and  

                                                                          (13) 
on     . These describe the shapes of equilibria when       , and the expediting conditions 
for    and   can be obtained from substituting the above back into Eqns 9 and 10 to reveal: 

                                                                 (14) 

 on     . The solution     can be dismissed since it produces imaginary curvatures. On 

    , we get  

                                                               (15) 
Correspondingly, each of the four cusp critical points are identified in terms of   as               

Figure 1: All possible stability states are summarized in this diagram. The surfaces shown are 
the critical boundaries from the system of Eqns 6 and 7. They define transitional surfaces. We 
allow a range of values for the parametric variable, such that          . We also fix λ at 
0,3. Each surface divides the parameter space in multistable and monostable regions. With 
reference to the point of view in this diagram, the volume above the top set of surfaces and 
below the bottom set of surfaces is bistable. The volume where the two bistable regions overlap, 
describes the tristable region. This feature is prominent here at the four sides of the diagram. 
The remaining space between the surfaces shows monostable regions. Since we are dealing with 
shallow shells, we choose to display a region close to the origin. Expanding this range however 
does not reveal further detail. 



                           

                                               ( 
 √ 

     
          )  (   

 √ 

     
        )  (16) 

These points are significant in various ways, but most prominently because they show parameter 
values where all three possible stability regions meet. They also indicate the extreme values of our 
parameters that allow tristability.  

4.2 Stability near the cusp catastrophe 

Returning to the strain energy expression, Eqn 4, we can study the stability of the shell at the 
vicinity of the cusp catastrophe. We previously explained how Eqn 5 is used to established stability 
of equilibria. This is straightforward for non-critical points. However at critical points, where the 

Figure 2: Colormaps showing the number of stable states across the   -   plane. These were 
obtained by numerically solving for the curvature and checking the stability via the Hessian matrix 
of the energy. By varying   , we can confirm the critical boundary curves described parametrically 
in Eqns 12-15. Purple shows monostable regions while white shows bistable regions. The 
characteristic projection of the cusp catastrophe can be seen in (b) and (c). The parameter   is 
constant with value 0,3, and   is set at 3,64. The initial Gaussian curvature has a tremendous 
effect on the stability of feasible solutions. For low, negative values of   , bistability is mostly 
observed near     . As we increase   , bistable behavior diminishes along that line and 
increases along     .  



stability matrix is zero by definition, further calculation is needed. We offer an example by studying 
the stability of a solution at one of the cusp catastrophe points we have calculated above.  

Solving for the curvatures, we get    
    

     √       √    , and these identify those values 
of state variables around which we expand the strain energy expression. This is achieved by 
specifying sliding coordinates    and   , with      

      and      
     . The final form 

of energy for the first solution is given by:  
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 The constant and first order terms can be ignored since they do not affect stability. The 
coefficient of the second order of the expansion is     

 , which shows that we have stability in the 
  direction, but the stability in the   direction is undetermined. This is shown graphically in Fig. 
3(a). To investigate this further we look at the coefficient of the third order. This is equal to 
 √      

    
   . The third order coefficients are plotted in Fig. 3(b). With respect to the   , the 

third order coefficient shows this shell geometry to be unstable at the catastrophe point. Similarly, 
we can draw the same conclusion for the second equilibrium point. Loss of stability at cusp critical 
points is typical, as explained by Thompson & Hunt (1984) [14].  

This result is useful for understanding actuation between shells of different stability properties. In 
practical terms, if we wanted to have a morphing shell that can act as both a monostable, and a 
multistable structure, we would need to manipulate our parameters and pass through this exact point 
in the parameter space. This brief examination shows however, that the structure would not be 
stable at this point. 

5. Conclusions 

This work has presented the landscape of possible stable geometries for uniformly curved shells. 
We have shown conclusively that the maximum number of stable states is three, and we have 
determined the conditions responsible for the transition between regions of multistability in terms of 
material parameters, pre-stress and initial shape. Specifically, we note that double initial curvature 
is always a prerequisite for tristability and that a minimum threshold exists for the Poisson ratio, 
below which tristability cannot be observed. A more thorough analysis of the influence of each 
parameter, and most notably of the shear stiffness, is the subject of current research and will be 
presented elsewhere. 

 

 

Figure 3: We find the Taylor expansion of the energy expression near the critical point that 
separates the monostable and tristable regions along     . The coefficients of the second 
and third orders of the expansion are in terms of    and    and are plotted here. 
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